Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 487
Filter
1.
Nat Commun ; 13(1): 5208, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064857

ABSTRACT

Adipose tissue macrophage (ATM) inflammation is involved with meta-inflammation and pathology of metabolic complications. Here we report that in adipocytes, elevated lactate production, previously regarded as the waste product of glycolysis, serves as a danger signal to promote ATM polarization to an inflammatory state in the context of obesity. Adipocyte-selective deletion of lactate dehydrogenase A (Ldha), the enzyme converting pyruvate to lactate, protects mice from obesity-associated glucose intolerance and insulin resistance, accompanied by a lower percentage of inflammatory ATM and reduced production of pro-inflammatory cytokines such as interleukin 1ß (IL-1ß). Mechanistically, lactate, at its physiological concentration, fosters the activation of inflammatory macrophages by directly binding to the catalytic domain of prolyl hydroxylase domain-containing 2 (PHD2) in a competitive manner with α-ketoglutarate and stabilizes hypoxia inducible factor (HIF-1α). Lactate-induced IL-1ß was abolished in PHD2-deficient macrophages. Human adipose lactate level is positively linked with local inflammatory features and insulin resistance index independent of the body mass index (BMI). Our study shows a critical function of adipocyte-derived lactate in promoting the pro-inflammatory microenvironment in adipose and identifies PHD2 as a direct sensor of lactate, which functions to connect chronic inflammation and energy metabolism.


Subject(s)
Adipocytes , Hypoxia-Inducible Factor-Proline Dioxygenases , Inflammation , Lactate Dehydrogenase 5 , Lactic Acid , Macrophages , Adipocytes/immunology , Adipose Tissue/immunology , Animals , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Insulin Resistance/genetics , Insulin Resistance/immunology , Insulin Resistance/physiology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/immunology , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/immunology , Lactic Acid/immunology , Macrophages/immunology , Mice , Obesity/genetics , Obesity/immunology , Obesity/pathology , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/immunology , Prolyl Hydroxylases
2.
J Endocrinol Invest ; 45(5): 1021-1029, 2022 May.
Article in English | MEDLINE | ID: mdl-35169984

ABSTRACT

OBJECTIVE: Obesity is a recognized risk factor for the progression to severe forms of COVID-19, yet the mechanisms of the association are unclear. METHODS: Subcutaneous abdominal adipose tissue specimens of subjects deceased from COVID-19 (n = 23) were compared to those of controls dying abruptly from causes other than infectious (accidental trauma, sudden cardiac death). Alterations of lung parenchyma consistent with moderate to severe disease were detected in all COVID-19 cases, not in controls. Investigations included: histopathologic features, detection of virus antigens and genome, characterization of infiltrating leukocytes, transcription levels of immune-related genes. RESULTS: By RT-PCR, the SARS-CoV-2 genome was detected in the adipose tissue of 13/23 (56%) cases of the COVID-19 cohort. The virus nucleocapsid antigen was detected in the cytoplasm of 1-5% adipocytes in 12/12 COVID-19 cases that were virus-positive by PCR in the adipose tissue (one case could not be assessed due insufficient tissue). The adipose tissue of COVID-19 cases showed leukocyte infiltrates and upregulation of the interferon-alpha pathway. After adjusting for age and sex, the activation score of IFN-alpha was directly related with transcription levels of the ACE2 gene, a key entry factor of SARS-CoV-2. CONCLUSIONS: In lethal COVID-19 cases, the SARS-CoV-2 nucleocapsid antigen has been detected in a sizeable proportion of adipocytes, showing that the virus may directly infect the parenchymal cells of subcutaneous fat. Infection appears to activate the IFN alpha pathway and to attract infiltrating leukocytes. Due to the huge numbers of adipocytes in adults, the adipose tissue represents a significant reservoir for SARS-CoV-2 and an important source of inflammatory mediators.


Subject(s)
Adipocytes , Adipose Tissue , COVID-19 , Interferon-alpha , SARS-CoV-2 , Adipocytes/immunology , Adipose Tissue/immunology , Adult , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Humans , Interferon-alpha/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
3.
J Immunol ; 208(1): 121-132, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34872979

ABSTRACT

Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.


Subject(s)
Adipocytes/immunology , Inflammation/metabolism , Macrophages/immunology , Obesity/metabolism , Proteoglycans/metabolism , RNA, Messenger/genetics , Vesicular Transport Proteins/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation , Humans , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/immunology , Proteoglycans/genetics , Vesicular Transport Proteins/genetics , Weight Loss/immunology
4.
J Endocrinol Invest ; 45(2): 413-423, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34392500

ABSTRACT

PURPOSE: Subjects with obesity may exhibit an increase in serum TSH concentrations. Several mechanisms have been proposed to explain this association, including the presence of a compensatory mechanism to counterbalance an accelerated turnover of thyroid hormones in subjects with obesity. This study aimed at evaluating whether the thyroids of subjects with obesity differs from those of normal-weight individuals regarding histology and gene expression profiling. METHODS: Ninety-eight patients were selected among those scheduled for thyroidectomy. At histology, thyroid tissue samples were investigated for the presence of adipocytes and/or lymphocyte infiltration. In a subset of patients, the expression at mRNA level of several genes involved in metabolic pathways and immune cell-related mechanisms was quantified by NanoString Technology. RESULTS: The presence of adipose cells was documented in thyroid specimens from 40% normal weight, 52.9% overweight and 73.5% patients with obesity. The number of infiltrating adipocytes was greater in specimens of patients with overweight or obesity compared to normal weight. The lymphocytes common antigen (CD45) and mast cell (MC) scores, and the number of CD3+ and CD8+ lymphocytes were higher in patients with overweight and obesity than in normal-weight subjects. Several genes involved in metabolic pathways were differently expressed in patients with overweight or obesity compared to normal weight, with upregulation of Leptin receptor and downregulation of Fatty Acid-Binding Protein 5. CONCLUSIONS: Increased BMI is associated with adipocyte and lymphocyte infiltration of the thyroid, not related to an autoimmune process, which might affect thyroid function in subjects with obesity. A differential gene expression profiling of metabolic and immune pathways in thyroid tissues of patients with obesity was also observed.


Subject(s)
Fatty Acid-Binding Proteins/analysis , Obesity , Receptors, Leptin/analysis , T-Lymphocyte Subsets , Thyroid Gland , Thyroid Hormones/metabolism , Adipocytes/immunology , Adipocytes/pathology , Body Mass Index , Female , Gene Expression Profiling/methods , Humans , Immunity, Cellular , Male , Metabolic Networks and Pathways , Middle Aged , Obesity/diagnosis , Obesity/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Thyroid Gland/metabolism , Thyroid Gland/pathology
5.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576053

ABSTRACT

Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.


Subject(s)
Interleukin-6/metabolism , Lipid Metabolism/immunology , Liver/metabolism , Muscles/metabolism , Receptors, Interleukin-6/metabolism , Adipocytes/immunology , Adipocytes/metabolism , Animals , Disease Models, Animal , Humans , Liver/immunology , Mice , Muscles/immunology , Signal Transduction/immunology
6.
J Mol Endocrinol ; 67(4): 173-188, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34382943

ABSTRACT

Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.


Subject(s)
Adipose Tissue/metabolism , Breast/metabolism , Epithelium/metabolism , Interleukin-10/metabolism , Phenotype , Premenopause/metabolism , Adipocytes/immunology , Adipocytes/metabolism , Adiposity , Adult , Biomarkers , Breast/pathology , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism , Humans , Immunohistochemistry , Inflammation Mediators/metabolism , Middle Aged , Models, Biological , Obesity/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Telomere/genetics , Telomere/metabolism , Young Adult
7.
Arterioscler Thromb Vasc Biol ; 41(10): 2563-2574, 2021 10.
Article in English | MEDLINE | ID: mdl-34348490

ABSTRACT

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lymphocytes/metabolism , Obesity/metabolism , Panniculitis/metabolism , TNF Receptor-Associated Factor 5/deficiency , Adipocytes/immunology , Adipocytes/pathology , Adipose Tissue/immunology , Adipose Tissue/pathology , Adiposity , Adult , Aged , Animals , Diet, High-Fat , Disease Models, Animal , Female , Humans , Lymphocytes/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/immunology , Obesity/pathology , Panniculitis/genetics , Panniculitis/immunology , Panniculitis/pathology , Signal Transduction , TNF Receptor-Associated Factor 5/genetics
8.
Front Immunol ; 12: 650768, 2021.
Article in English | MEDLINE | ID: mdl-34248937

ABSTRACT

The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.


Subject(s)
Adaptive Immunity/immunology , Adipocytes/immunology , Adipose Tissue/immunology , Immunity, Innate/immunology , Obesity/immunology , Adipocytes/cytology , Adipocytes/metabolism , Adipokines/immunology , Adipokines/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cytokines/immunology , Cytokines/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
9.
Science ; 373(6550)2021 07 02.
Article in English | MEDLINE | ID: mdl-34210853

ABSTRACT

The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.


Subject(s)
Adipocytes/immunology , Diet, High-Fat , Drosophila Proteins/metabolism , Energy Metabolism , Lymphokines/metabolism , Macrophages/immunology , Obesity/immunology , Platelet-Derived Growth Factor/metabolism , Thermogenesis , Adipose Tissue, Brown/immunology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Hemocytes/immunology , Liver/immunology , Lymphokines/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet-Derived Growth Factor/genetics , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Inflammation ; 44(6): 2260-2269, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34165676

ABSTRACT

The anti-inflammatory adipokine CTRP-3 might affect innate immune reactions such as NOD1. The impact of CTRP-3 on NOD1-mediated inflammation in adipocytes and monocytic cells as well as on NOD1 expression was investigated. Murine 3T3-L1 pre-adipocytes and adipocytes as well as human THP-1 monocyte-like cells were co-stimulated with the synthetic NOD1 agonist Tri-DAP and recombinant CTRP-3. Gonadal adipose tissue and primary adipocytes were obtained from a murine model carrying a knockout (KO) of CTRP-3 in adipocytes but not in stroma-vascular cells. Wildtype mice with lipopolysaccharide (LPS)-induced elevated NOD1 expression were treated with CTRP-3. Secreted inflammatory cytokines in cell supernatants were measured by ELISA and mRNA levels were quantified by RT-PCR. Pro-inflammatory chemokine and cytokine secretion (MCP-1, RANTES, TNFα) was induced by NOD1 activation in adipocytes and monocyte-like cells, and MCP-1 and RANTES release was effectively inhibited by pre-incubation of cells with CTRP-3. CTRP-3 also antagonized LPS-triggered induction of NOD1 gene expression in murine adipose tissue, whereas adipocyte CTRP-3 deficiency upregulated NOD1 expression in adipose tissue. CTRP-3 is an effective antagonist of peptidoglycan-induced, NOD1-mediated inflammation and of LPS-induced NOD1 expression. Since basal NOD1 expression is increased by adipocyte CTRP-3 deficiency, there have to be also inflammation-independent mechanisms of NOD1 expression regulation by CTRP-3.


Subject(s)
Adipocytes/metabolism , Adipokines/metabolism , Intra-Abdominal Fat/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Systemic Inflammatory Response Syndrome/metabolism , 3T3-L1 Cells , Adipocytes/immunology , Adipokines/genetics , Animals , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Intra-Abdominal Fat/immunology , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nod1 Signaling Adaptor Protein/genetics , Signal Transduction , Subcutaneous Fat/immunology , Subcutaneous Fat/metabolism , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/immunology , THP-1 Cells
11.
Front Immunol ; 12: 666344, 2021.
Article in English | MEDLINE | ID: mdl-34108967

ABSTRACT

Adipose tissue is comprised of heterogenous cell populations that regulate both energy metabolism and immune reactions. Macrophages play critical roles in regulating immunometabolic homeostasis or disorders through cooperation with adipocytes, adipose tissue-derived stem cells (ADSCs) or other cells in adipose tissue. Extracellular vesicles (EVs) are recently recognized as efficient messengers for intercellular communication. Emerging evidences have demonstrated that adipose EVs are actively involved in the mutual interactions of macrophages, adipocytes and ADSCs, which produce considerable influences on immunometabolism under healthy or obese conditions. Here, we will elaborate the production and the characteristics of adipose EVs that are related to macrophages under different metabolic demands or stresses, whilst discuss the roles of these EVs in regulating local or systemic immunometabolic homeostasis or disorders in the context of adipocyte-macrophage dialogue and ADSC-macrophage interaction. Particularly, we provide a profile of dynamic adipose microenvironments based on macrophages. Adipose EVs act as the messengers between ADSCs and macrophages to maintain the balance of metabolism and immunity, while drive a vicious cycle between hypertrophic adipocytes and inflammatory macrophages to cause immunometabolic imbalance. This review may provide valuable information about the physio- or pathological roles of adipose EVs and the application of adipose EVs in the diagnosis and treatment of metabolic diseases.


Subject(s)
Adipose Tissue/immunology , Extracellular Vesicles/immunology , Homeostasis/immunology , Macrophages/immunology , Obesity/immunology , Adipocytes/cytology , Adipocytes/immunology , Adipose Tissue/cytology , Cell Communication , Humans , Macrophages/cytology , Obesity/pathology , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology
12.
Cell Reprogram ; 23(2): 108-116, 2021 04.
Article in English | MEDLINE | ID: mdl-33861637

ABSTRACT

In our previous study, we constructed Schwann cells (SCs) that stably express Simian virus 40 T antigen (SV40T-SCs). SV40T-SCs functions and markers are similar to those of neural crest cells. There we used bone morphogenetic protein 9 (BMP9) to induce SV40T-SCs differentiation in vitro and in vivo and study possible related mechanism. SV40T-SCs differentiation was induced by BMP9 conditioned medium. The lipogenic differentiation of SV40T-SCs was assessed by Oil Red O staining. Alizarin red and Alcian blue staining, and alkaline phosphatase (ALP) assays were used to evaluate the SV40T-SCs osteogenic differentiation. The expression of adipocyte differentiation (c/EBPα and c/EBPß) and osteoblast differentiation markers (OSX and RUNX2) were detected by quantitative polymerase chain reaction (qPCR). To study possible mechanism related to SV40T-SCs differentiation, the P53 and E2F1 activity were assessed by luciferase reporter plasmid, and Slug and E-cadherin expression by qPCR. In vivo, SV40T-SCs infected by Ad-BMP9 or Ad-GFP were injected under the skin of nude mice. After 4-6 W, the mice were euthanized and subcutaneously mass formed at injecting sites was collected for pathological analysis. After SV40T-SCs were cultured in BMP9 conditioned medium, lipid droplets were formed in the cytoplasm of these cells. Alizarin red and Alcian blue staining were positive, and ALP activity of SV40T-SCs increased significantly. The expression of adipocyte differentiation (c/EBPα and c/EBPß) and osteoblast differentiation markers (OSX and RUNX2) in SV40T-SCs was upregulated by BMP9. SV40T significantly increased Slug expression and decreased E-cadherin expression. SV40T-SCs infected with Ad-BMP9 were able to differentiate into adipose tissue and form a small bone matrix under the nude mice skin. SV40T-SCs have the ability to differentiate into adipocytes and osteoblasts in vivo and in vitro. SV40T can upregulate the Slug expression and downregulate the E-cadherin expression to produce endothelial-to-mesenchymal transition (EMT). The multidirectional differentiation ability of SV40T-SCs may be related to EMT.


Subject(s)
Adipocytes/cytology , Antigens, Viral, Tumor/immunology , Growth Differentiation Factor 2/metabolism , Osteoblasts/cytology , Osteogenesis , Schwann Cells/cytology , Simian virus 40/immunology , Adipocytes/immunology , Adipocytes/metabolism , Animals , Antigens, Viral, Tumor/metabolism , In Vitro Techniques , Male , Mice , Mice, Nude , Osteoblasts/immunology , Osteoblasts/metabolism , Schwann Cells/immunology , Schwann Cells/metabolism , Simian virus 40/metabolism
13.
Nat Commun ; 12(1): 2388, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888702

ABSTRACT

To unravel the pathogenesis of obesity and its complications, we investigate the interplay between circadian clocks and NF-κB pathway in human adipose tissue. The circadian clock function is impaired in omental fat from obese patients. ChIP-seq analyses reveal that the core clock activator, BMAL1 binds to several thousand target genes. NF-κB competes with BMAL1 for transcriptional control of some targets and overall, BMAL1 chromatin binding occurs in close proximity to NF-κB consensus motifs. Obesity relocalizes BMAL1 occupancy genome-wide in human omental fat, thereby altering the transcription of numerous target genes involved in metabolic inflammation and adipose tissue remodeling. Eventually, clock dysfunction appears at early stages of obesity in mice and is corrected, together with impaired metabolism, by NF-κB inhibition. Collectively, our results reveal a relationship between NF-κB and the molecular clock in adipose tissue, which may contribute to obesity-related complications.


Subject(s)
ARNTL Transcription Factors/metabolism , Circadian Clocks/immunology , Intra-Abdominal Fat/pathology , NF-kappa B/metabolism , Obesity/complications , Adipocytes/immunology , Adipocytes/metabolism , Adiponectin/genetics , Adult , Animals , Biopsy , Case-Control Studies , Cells, Cultured , Chromatin Immunoprecipitation Sequencing , Circadian Clocks/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Inflammation/immunology , Inflammation/pathology , Intra-Abdominal Fat/immunology , Male , Mesenchymal Stem Cells , Mice, Transgenic , Middle Aged , Obesity/immunology , Obesity/metabolism , Obesity/pathology , Omentum/immunology , Omentum/pathology , Period Circadian Proteins/genetics , Primary Cell Culture , Transcription, Genetic
14.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917351

ABSTRACT

Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.


Subject(s)
Adipocytes/metabolism , Breast Neoplasms/metabolism , Signal Transduction , Adipocytes/immunology , Adipocytes/pathology , Adipokines/immunology , Adipokines/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism
15.
Nat Immunol ; 22(5): 639-653, 2021 05.
Article in English | MEDLINE | ID: mdl-33907320

ABSTRACT

White adipose tissue (WAT) is an essential regulator of energy storage and systemic metabolic homeostasis. Regulatory networks consisting of immune and structural cells are necessary to maintain WAT metabolism, which can become impaired during obesity in mammals. Using single-cell transcriptomics and flow cytometry, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of healthy lean and obese human WAT. We report new subsets and developmental trajectories of adipose-resident innate lymphoid cells, dendritic cells and monocyte-derived macrophage populations that accumulate in obese WAT. Analysis of cell-cell ligand-receptor interactions and obesity-enriched signaling pathways revealed a switch from immunoregulatory mechanisms in lean WAT to inflammatory networks in obese WAT. These results provide a detailed and unbiased cellular landscape of homeostatic and inflammatory circuits in healthy human WAT.


Subject(s)
Immunity, Innate , Obesity/immunology , Subcutaneous Fat, Abdominal/immunology , Abdominoplasty , Adipocytes/immunology , Adipocytes/metabolism , Adult , Cell Communication/immunology , Cell Line , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Female , Humans , Inflammation/immunology , Inflammation/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Obesity/pathology , Obesity/surgery , RNA-Seq , Signal Transduction/immunology , Single-Cell Analysis , Subcutaneous Fat, Abdominal/pathology , Subcutaneous Fat, Abdominal/surgery
16.
Sci Rep ; 11(1): 2974, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536542

ABSTRACT

In obesity, adipose tissue derived inflammation is associated with unfavorable metabolic consequences. Uremic inflammation is prevalent and contributes to detrimental outcomes. However, the contribution of adipose tissue inflammation in uremia has not been characterized. We studied the contribution of adipose tissue to uremic inflammation in-vitro, in-vivo and in human samples. Exposure to uremic serum resulted in activation of inflammatory pathways including NFκB and HIF1, upregulation of inflammatory cytokines/chemokines and catabolism with lipolysis, and lactate production. Also, co-culture of adipocytes with macrophages primed by uremic serum resulted in higher inflammatory cytokine expression than adipocytes exposed only to uremic serum. Adipose tissue of end stage renal disease subjects revealed increased macrophage infiltration compared to controls after BMI stratification. Similarly, mice with kidney disease recapitulated the inflammatory state observed in uremic patients and additionally demonstrated increased peripheral monocytes and inflammatory polarization of adipose tissue macrophages (ATMS). In contrast, adipose tissue in uremic IL-6 knock out mice showed reduced ATMS density compared to uremic wild-type controls. Differences in ATMS density highlight the necessary role of IL-6 in macrophage infiltration in uremia. Uremia promotes changes in adipocytes and macrophages enhancing production of inflammatory cytokines. We demonstrate an interaction between uremic activated macrophages and adipose tissue that augments inflammation in uremia.


Subject(s)
Adipocytes/immunology , Kidney Failure, Chronic/immunology , Macrophages/immunology , Obesity/complications , Uremia/immunology , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Case-Control Studies , Cell Communication/immunology , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Humans , Inflammation/blood , Inflammation/immunology , Inflammation Mediators/metabolism , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/metabolism , Lipolysis/immunology , Macrophages/metabolism , Male , Mice , Obesity/blood , Obesity/immunology , Obesity/metabolism , Primary Cell Culture , RAW 264.7 Cells , THP-1 Cells , Uremia/blood , Uremia/metabolism
17.
Int J Med Sci ; 18(3): 582-592, 2021.
Article in English | MEDLINE | ID: mdl-33437193

ABSTRACT

Obesity associates with macrophage accumulation in adipose tissue where these infiltrating cells interact with adipocytes and contribute to the systemic chronic metabolic inflammation present in immunometabolic diseases. Tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) are two of the main enzymes of catecholamines (CA) synthesis. Adipocytes and macrophages produce, secrete and respond to CA, but the regulation of their synthesis in the interplay between immune and metabolic systems remains unknown. A model of indirect cell coculture with conditioned medium (CM) from RAW 264.7 macrophages with or without LPS-activation and 3T3-L1 adipocytes and preadipocytes was established to study the effect of cellular secretomes on the expression of the above enzymes. During the adipocyte differentiation process, we found a decrease of TH and PNMT expression. The secretome from LPS-activated macrophages downregulated TH and PNMT expression in preadipocytes, but not in mature adipocytes. Mature adipocytes CM induced a decrease of PNMT levels in RAW 264.7 macrophages. Pre and mature adipocytes showed a similar pattern of TH, PNMT and peroxisome proliferator-activated receptor gamma expression after exposure to pro and anti-inflammatory cytokines. We evidenced macrophages and adipocytes coregulate the expression of CA synthesis enzymes through secretome, with non-inflammatory signaling networks possibly being involved. Mediators released by macrophages seem to equally affect CA production by adipocytes, while adipocytes secretome preferentially affect AD production by macrophages. CA synthesis seems to be more determinant in early stages of adipogenic differentiation. Our results suggest that CA are key signaling molecules in the regulation of immune-metabolic crosstalk within the adipose tissue.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/immunology , Cell Communication/immunology , Macrophages/metabolism , Obesity/immunology , 3T3-L1 Cells , Adipocytes/immunology , Adipokines/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Catecholamines/biosynthesis , Cell Differentiation/immunology , Coculture Techniques , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Obesity/metabolism , Phenylethanolamine N-Methyltransferase/metabolism , RAW 264.7 Cells , Tyrosine 3-Monooxygenase/metabolism
18.
Sci Transl Med ; 13(577)2021 01 20.
Article in English | MEDLINE | ID: mdl-33472955

ABSTRACT

Infections are a major complication of obesity, but the mechanisms responsible for impaired defense against microbes are not well understood. Here, we found that adipocyte progenitors were lost from the dermis during diet-induced obesity (DIO) in humans and mice. The loss of adipogenic fibroblasts from mice resulted in less antimicrobial peptide production and greatly increased susceptibility to Staphylococcus aureus infection. The decrease in adipocyte progenitors in DIO mice was explained by expression of transforming growth factor-ß (TGFß) by mature adipocytes that then inhibited adipocyte progenitors and the production of cathelicidin in vitro. Administration of a TGFß receptor inhibitor or a peroxisome proliferator-activated receptor-γ agonist reversed this inhibition in both cultured adipocyte progenitors and in mice and subsequently restored the capacity of obese mice to defend against S. aureus skin infection. Together, these results explain how obesity promotes dysfunction of the antimicrobial function of reactive dermal adipogenesis and identifies potential therapeutic targets to manage skin infection associated with obesity.


Subject(s)
Adipocytes/immunology , Anti-Infective Agents , Obesity/complications , Staphylococcal Infections/immunology , 3T3-L1 Cells , Adipocytes/microbiology , Animals , Anti-Infective Agents/pharmacology , Cell Differentiation , Diet , Diet, High-Fat , Mice , Mice, Inbred C57BL , PPAR gamma/agonists , Staphylococcal Infections/complications , Staphylococcus aureus , Transforming Growth Factor beta/antagonists & inhibitors
19.
Nutrients ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430086

ABSTRACT

The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (-48.4%), inducible nitric oxide synthase (iNOS) (-46.2%) and COX-2 (-64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (-52.1%) and COX-2 (-66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.


Subject(s)
Adipocytes/physiology , Adipogenesis/drug effects , Inflammation/prevention & control , Peptides/pharmacology , Plant Proteins/pharmacology , Salvia/chemistry , Seeds/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/immunology , Albumins/pharmacology , Animals , Fatty Acid Synthases/metabolism , Glutens/pharmacology , Lipid Metabolism , Mice , Monoacylglycerol Lipases/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , RAW 264.7 Cells , Seed Storage Proteins/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...